Asymptotic behaviour of the inductance coefficient for thin conductors

نویسندگان

  • Youcef Amirat
  • Rachid Touzani
چکیده

We study the asymptotic behaviour of the inductance coefficient for a thin toroidal inductor whose thickness depends on a small parameter ε > 0. We give an explicit form of the singular part of the corresponding potential uε which allows to construct the limit potential u (as ε → 0) and an approximation of the inductance coefficient Lε. We establish some estimates of the deviation uε −u and of the error of approximation of the inductance. We show that Lε behaves asymptotically as ln ε, when ε → 0. Résumé On étudie le comportement asymptotique du coefficient d’inductance pour un inducteur toröıdal filiforme dont l’épaisseur dépend d’un petit paramètre ε > 0. On donne une forme explicite de la partie singulière du potentiel associé uε puis on construit le potentiel limite u (quand ε → 0) et on donne une approximation du coefficient d’inductance Lε. On établit des estimations de l’écart uε−u et de l’erreur d’approximation de l’inductance. On montre que Lε se comporte asymptotiquement comme ln ε au voisinage de ε = 0.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self-inductance coefficient for toroidal thin conductors

We consider the inductance coefficient for a thin toroidal inductor whose thickness depends on a small parameter ε > 0. An explicit form of the singular part of the corresponding potential u is given. This allows to construct the limit potential u (as ε → 0) and an approximation of the inductance coefficient L. We establish some estimates of the deviation u − u and of the error of approximation...

متن کامل

Mutual Inductance of Thin Coaxial Circular Coils with Constant Current Density in Air (Filament Method)

This paper deals with an efficient and fast approach for determining the mutual inductance between thin current loops (filamentary coils, thin cylindrical coils, thin disk coils and all possible combinations). This approach is based on the filament method where conductors are approximated by a set of Maxwell’s coils. The resulting equations are expressed in term of the complete elliptical integ...

متن کامل

Mutual Inductance Between Coaxial Circular Coils of Rectangular Cross Section and Thin Coaxial Circular Coils with Constant Current Density in Air (Filament Method)

This paper deals with an efficient and fast approach for determining the mutual inductance between coaxial circular coils of rectangular cross section in combination with thin coaxial circular coils as the thin wall solenoid, the thin disk coil and the filamentary coil. This approach is based on the filament method where conductors are approximated by the set of Maxwell’s coils. The obtained ex...

متن کامل

Analysis of formulas to calculate the AC inductance of different configurations of nonmagnetic circular conductors

The inductance of singleand multi-conductors intended for electronic devices, power transmission and distribution or grounding, lightning and bonding systems greatly depends on the specific geometry and the supply frequency. It is also influenced by skin and proximity effects. The inductance is an important design parameter, since it significantly influences the voltage drop in the conductor, t...

متن کامل

Asymptotic behaviour of associated primes of monomial ideals with combinatorial applications

Let  $R$ be a commutative Noetherian ring and $I$ be an ideal of $R$. We say that $I$ satisfies the persistence property if  $mathrm{Ass}_R(R/I^k)subseteq mathrm{Ass}_R(R/I^{k+1})$ for all positive integers $kgeq 1$, which $mathrm{Ass}_R(R/I)$ denotes the set of associated prime ideals of $I$. In this paper, we introduce a class of square-free monomial ideals in the polynomial ring  $R=K[x_1,ld...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006